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The Taylor-Couette system is an extraordinary hydrodynamic system, showing almost all low-
dimensional scenarios for routes to chaos for proper boundary conditions. For a period-doubling route
to chaos, bifurcation diagrams were experimentally recorded and the dynamic variables such as fractal
dimensions, Lyapunov exponents, and entropies are estimated as a function of Reynolds number. The

evolution of the correlation dimension D, with Reynolds number Re shows that D, < (Re—Re,)

1/4
’

which is similar to continuous phase transitions. An investigation of the critical phenomena must be
performed as high-precision hydrodynamic experiments because the results show that the kind of
scenario depends sensitively on the boundary conditions.

PACS number(s): 47.20.—k, 05.45.+b

I. INTRODUCTION

When, in Taylor-Couette flow, the Reynolds number,
defined as Re=Qdr; /v, where Q is the angular frequency
of the rotation for the inner cylinder and d =r,—r; is the
width of the annular gap, is increased gradually starting
from zero, the system passes through sequences of space-
and time-periodic flow patterns. These scenarios depend
sensitively on the boundary conditions and lead finally to
chaotic and turbulent motion. Investigations yield a
breakup of a two-torus, period doublings, intermittency,
homoclinic orbits, and stable three-tori [1-9]. A review
of hydrodynamic instabilities is given by Di Prima and
Swinney [10]. The importance of the influence of the
boundary conditions on the flow was first demonstrated
by Benjamin and Mullin [11].

One point of our work is to find functional dependen-
cies of the scenarios on the boundary conditions, so that
one may better understand why the solutions of Navier-
Stokes equations map onto the solutions of very different
low-dimensional models, even if these solutions lie in
close proximity in parameter space. This includes slight
variations in symmetry to estimate this effect.

The Taylor-Couette experiment considered here con-
cerns the behavior of a flow of a viscous fluid between
two concentric cylinders. The outer cylinder, as well as
the bottom and top plate, are fixed while the inner one ro-
tates.

The experiments done here are performed in a Taylor-
Couette flow with gap-length-to-width ratios (I'=1/d)
ranging from 0.3 to 0.5, where the solution branches are
well known for radius ratio =0.5 [12]. The advantage
of working with small geometries stems from the fact
that the number of solutions is small and that the experi-
ment can be properly controlled. Of particular interest
here is a restabilized symmetric two-vortex state which
shows various kinds of period multiples as a function of
slight changes in the boundary conditions. Results of a
period-doubling cascade have been reported in [2,13].

The main concern of this paper is period-multiplying
scenarios found in many experimental situations [14-16],
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especially period-doubling cascades. In this context we
want to give quantitative estimates of the onset of chaos
in terms of dynamic variables such as Lyapunov spectra,
fractal dimensions, and entropies, and we want to charac-
terize these transitions similar to bifurcations and phase
transitions. This paper briefly describes the experimental
setup and the bifurcations studied, provides an overview
of the methods used to determine the dynamic variables,
and then discusses the results obtained from period-
multiplying scenarios in terms of the dynamic variables.

II. EXPERIMENTAL SETUP

The Taylor-Couette apparatus used in these experi-
ments consists of a rotating inner cylinder machined from
stainless steel having a radius of ,=12.5 mm, a station-
ary outer cylinder made from optical polished glass with
a radius of r,=25 mm, and stationary bottom and top
plates. The accuracy of the radii is better than 0.01 mm
over the entire length of 220 mm. The length of the
cylinder can be varied continuously, so the aspect ratio I"
used as a geometrical control parameter (defined as the
ratio of gap length to gap width) takes values from O to
17.6. The second geometrical parameter is illustrated in
Fig. 1. To get non-cylinder-symmetric boundary condi-
tions the top plate of the apparatus can be inclined by a
small amount. As a measure for the inclination we give
the parameter k yielding an inclination angle
g=arctan(k /49.5 mm). Silicon oil with different viscosi-
ties depending on the flow situation is used as a working
fluid. The external control parameter is the Reynolds
number defined as Re=({dr;) /v, where (Q is the angular
frequency of the rotating inner cylinder, d =ry—r; the
gap width, and v the kinematic viscosity of the oil. The
temperature of the fluid is held constant to within 0.01 K
by circulating thermostatically controlled silicon oil. The
control of the inner cylinder speed is better than one part
in 107* in the short term and better than one part in
10~ % in the long-term average. Thus the accuracy of the
absolute value of the Reynolds number is about 19% and
for relative values better than 107>, The local velocity is
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FIG. 1. Sketch of the boundary conditions o,f the Taylor-
Couette system. h, gap length; d, gap width (I'=h /d); k, in-
clination of top plate.

measured by a real-fringe laser-Doppler velocity meter
(LDV) and recorded by a phase-locked-loop (PLL) analog
tracker. After filtering by an analog Bessel filter of fourth
order, the velocity signal is fed into an analog-to-digital
converter (ADC) with a 12-bit resolution and then into a
computer where the data processing is performed. For
more details of the experimental setup see [13,17,18].

III. BIFURCATIONS

The underlying basic flows considered here are either a
symmetric two-vortex state or a single-vortex state with
two possible directions of rotation. Figure 2 shows
schematically the flow pattern of these two types of flow
occurring at an aspect ratio I'=0.42 and Re=550,
drawn after flow visualization photography. (s} ) marks
the symmetric two-vortex state, (a¢) an asymmetric
single-vortex state (i, inner cylinder; o, outer cylinder).
The two-cell flow is mirror symmetric relative to the mid-
plane, so the axial velocity component in this plane is
zero for all Reynolds numbers. The single-cell flow ap-
pears in two equivalent modes with one big vortex and a
small weak one near the bottom or the top plate, respec-
tively, having contrary direction of rotation. So in con-
trast to the symmetric mode, the axial velocity com-
ponent is nonzero almost everywhere in the midplane.
Thus the location of the LDV measurement volume indi-
cated by X in Fig. 2 is suitable to characterize the actual
flow mode by the measurement of the axial velocity com-
ponent.

Figure 3 shows a bifurcation diagram recorded at an
aspect ratio of I'=0.374 and an inclination of the top
plate of Kk =0.20 mm (0.23°). The Reynolds number was
scanned quasistatically from Re=50-1000 (A Re/At
=0.04 s~ !). The symmetric two-vortex state (s) bifur-
cates at point 4 to a single-vortex branch (a; and a} for
different directions of rotation). Branch a7 is disconnect-
ed by the asymmetry introduced by the inclination of the
top plate. The one-vortex state undergoes a Hopf bifur-

(s (a)

FIG. 2. Flow patterns for the symmetric and asymmetric
vortex state. X marks the position of the velocity measurement.
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FIG. 3. Bifurcation diagram for I'=0.374 and k£ =0.20 mm

(0.23°). The dashed box indicates the restabilized symmetric
state s 7.

cation at point G (G*). The two-vortex state restabilizes
at point B, starting a secondary symmetric branch s}.
This branch can be reached experimentally by a sudden
change in Reynolds number only. Towards higher Rey-
nolds numbers it shows a Hopf bifurcation at point C,
which can either show a period-doubling cascade, inter-
mittency, breakup of tori, or odd multiples of the main
period, depending on slight changes in aspect ratio or
slight inclination of the top plate to reduce symmetry. At
point D this state loses stability due to the amplitude of
the oscillation and stabilizes into one of the single-vortex
states (marked with an arrow). All branches marked with
an asterisk are disconnected from the primary solution.

In Figs. 4(a)—4(j) the bifurcation cascades to the chaot-
ic regime are shown for the restabilized symmetric
branch (marked with a dashed box in Fig. 3). Here only
the successive extrema of the axial velocity v, are plotted
while the Reynolds number is ramped quasistatically.
This reveals period doublings and periodic windows in
the chaotic regime which are hidden in Fig. 3. The dia-
grams are drawn for increasing inclination of the top
plate k and constant I'=0.374. The maximum inclina-
tion in this sequence is k =0.36 mm, corresponding to an
angle of 0.42°. One sees the strong dependence of the bi-
furcation diagram on the boundary conditions. Periodic
windows indicated by W; (j=1,2) appear and disappear
for certain values of inclination k. The onset of the first
Hopf bifurcation to period 1 (marked with P,) as well as
the period-doubling points to periods 2 and 4 (P, and P,)
are shifted. For k=0.3 mm (0.35°) one obtains a se-
quence of period-1 oscillations marked with P}, P2, and
P%, respectively. The onset of chaos and the length of the
chaotic regimes are influenced by the inclination. At the
end of each route, the symmetric flow s{ becomes unsta-
ble and the asymmetric flow appears.

Table I shows the values measured experimentally for
the scaling number 8* obtained from

Re;.—Re; _
=_ -1 (1)
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FIG. 4. Bifurcation diagrams obtained by plotting successive extrema of the axial velocity while the Reynolds number is ramped
quasistatically. From (a) to (j) the inclination of the top plate is increased from k =0 mm (0°) to k =0.36 mm (0.42°).
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TABLE 1. Experimental scaling number 8* obtained from
the Taylor-Couette system.

r= 0.330  0.335 0.355 0.360 0.362  0.365
k
0.10 2.35 6.00
0.13 2.11 2.00 4.67
0.23 6.00 3.67
0.25 1.22 2.67

where Re; is the critical Reynolds number for the jth
period-doubling bifurcation [19]. The values are obtained
for different aspect ratios and inclination of the top plate.
A comparison with the theoretical Feigenbaum number
[20] of the simple logistic model, which is determined to
be §=4.6992. . ., shows that the one-dimensional map is
not sufficient to characterize the period-doubling se-
quences found in Taylor-Couette flow. On the other
hand we have to calculate our scaling number 8* from
the limit of the finite cascade Re; (j—jy.)- In the
present experiment we found a maximum of five
(Jmax =35) successive period doublings.

The observed scenarios are plotted in a Re-I" diagram
for kK =0.05 mm (0.06°) in Fig. 5(a) and for k =0.10 mm
(0.12°) in Fig. 5(b). Period multiples are indicated by a
number reflecting the periodicity. Intermittencies are
marked with (Im) and beats with (Schw). In addition, at
period-doubling cascades (P) the largest observable
periodicity is given. A rich variety of scenarios can be
found which suggest the scenario of the standard logistic
map. But this conjecture is not correct because the bifur-
cation diagrams are projections of a higher-dimensional
system, as can be shown below when the dynamic vari-
ables such as fractal dimensions and Lyapunov exponents
are estimated.
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IV. METHODS

A variety of methods is available to characterize time
series measured on nonlinear dynamical systems. One
can calculate power spectra with fast-Fourier-transform
(FFT) algorithms, and the corresponding autocorrelation
function with the help of the Wiener-Khintchine
theorem. Figure 6 shows the time series v,(¢), the auto-
correlation function c(7), and the power spectrum of the
axial velocity component. The left-hand column
represents the state of the Taylor-Couette flow at
Re=701, and the right-hand column at Re=718
[T=0.374, Kk =0.2 mm (0.23°)]. While the time series of
both chaotic states look very similar, the autocorrelation
function reveals the different system states. The c¢(7) for
Re=718 decays faster than for Re=701, as expected for
a more chaotic state. The power spectra show more de-
tails. One sees broad spectra at low frequencies with
different levels but the same main peak at f,, =0.7 Hz.
Besides this main peak one recognizes smaller peaks at
fi=/5f, (i=1,2,...), corresponding to a quintu-
pling in the inverse cascade. Unfortunately the efficiency
of these methods is limited if one wants to give quantita-
tive characterizations of different chaotic time series.

More detailed results are obtained with the powerful
methods which we briefly describe on experimental exam-
ples below. To classify the time series one first recon-
structs the phase space (or rather embedding space) of the
nonlinear dynamical system. This is usually done with
Takens’s delay-time coordinates [21], where a vector in
the embedding space is given by

x(t,)= (v, (t,)v,(t,+7), ..., v, (t,+7[dg—1]) . ()
s=1,...,Ng—(dg—1)7/T,; dg is the embedding di-

mension, Ny, is the number of sampled data points, 7 is
the delay time, and T, is the sampling time. For conven-
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FIG. 6. Time series v,(t), autocorrelation function ¢(7), and
power spectrum for I'=0.374, kK =0.20 mm (0.23°). Left-hand
column: Re=701; right-hand column: Re=718.

ience we shall write x; instead of x(¢).

To find optimal embedding parameters, i.e., the proper
delay time 7 and a sufficiently large embedding dimension
dg, one has to calculate the fill factor f; (7) (a measure

of the utilization of the embedding space in any embed-
ding dimension) or the integral local deformation AdE(T)
(a measure of the homogeneity of the local flow).

The fill factor is defined by

N ref

2 VdE,k(T)
1 k=1

Nref ( Vd ) ’
E

de(T)E logyo (3)

where des’ «(7) is the volume of the kth parallelepiped

defined by (dg+1) corner points which are arbitrarily
distributed on the attractor, VdE> is a normalization by

the volume which covers the attractor in each embedding
dimension di, and N is the number of reference points.
The first maxima of the fill factor, corresponding to max-
imum spanned attractors in the embedding space, pro-
vide proper delay times. A sufficiently large embedding
dimension can be obtained by the convergency of the
qualitative structure of the fill factor for successively in-
creasing embedding dimension. A detailed description of
this method can be found in [22,23].

To define the integral local deformation AdE(T) one cal-

culates the evolution of successive distances between a
reference point and the center of mass of neighboring
points when time proceeds. In an optimal reconstruc-
tion, for which we require homogeneity of the local flow,
points on neighboring trajectories remain neighboring for
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small evolution times. The first minima of AdE('r), corre-

sponding to a maximum homogeneity of the local flow,
provide proper delay times; the embedding dimension can
be obtained from the convergency at these minima. For
details see [23].

Figure 7(a) illustrates the fill factor for the Re=701
state discussed above. We calculated de(T) for embed-

ding dimensions d; =2-10 and delay times 7/7,.=0-1.1
(T, is the period of the main frequency in the power spec-
trum shown in Fig. 6). The arrows A and B indicate
proper delay times. Figure 7(b) shows the integral local
deformation in the same interval as the fill factor. AdE('r)

is normalized by (7/T,), which is often convenient for
chaotic time series [23,24]. Arrows A4 and B again indi-
cate proper delay times at minima. The result of this cal-
culation is the same as the result obtained from the fill
factor, i.e., the local flow is homogeneous when the at-
tractor is maximally spanned. An estimate of the
sufficiently large embedding dimension yields d; =7.

In Fig. 8 one sees the reconstructions of the strange at-
tractors, which correspond to the states introduced in

dg =2 @
-1+
/’T‘\/\/
. -24 Ll
[}
[N !
=
I -3 |
&
.
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-6
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(Adg(T) Ta)T
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FIG. 7. Fill factor and averaged integral local deformation vs
normalized delay time for embedding dimensions dy=2-10
[T'=0.374, k=0.20 mm (0.23°), Re=701]. Proper values for
the delay time are indicated by dashed lines at arrows A and B.
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FIG. 8. (a) and (b) Reconstructions of the
strange attractors with delay time coordinates.
(c) and (d) Corresponding return maps.
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Fig. 6, with delay times 7/7T,~0.22 (indicated with ar-
row B in Fig. 7 for Re=701). On the right-hand side the
corresponding return maps are given. We took the ex-
treme values of the velocity time series, i.e., successive
minima and maxima, as v,(j). The return map was
reconstructed by plotting v,(j) vs v,(j+1). In Fig. 8(c)
all points lie on a complex curve with some variance, in-
dicating that this flow shows deterministic chaos having a
strange attractor. The dotted lines show a few iterations
on the attractor. In Fig. 8(d), the corresponding return
map of the Re=718 state looks more complicated than
Fig. 8(c) and it is hard to decide whether one sees an at-
tractor or noise-dominated dynamics.

To indicate a low-dimensional strange attractor in
cases where the fill factor or the integral local deforma-
tion show no clear results for a sufficiently large embed-
ding dimension, one usually calculates the dynamic vari-
ables such as fractal dimensions, Lyapunov spectra, or
entropies for increasing embedding dimensions, looking
for a convergence of these values.

To estimate the fractal dimension of the reconstructed
strange attractors in phase space we calculate the correla-
tion dimension D, [25]

C(R) <R D, = lim 2R @)
R—0 logo(R)
R is the scaling radius and C(R) is the correlation in-
tegral

1 Nref 1
C(R)=
Nref jgl Ndat i=1

Ndat

(R—]x; —x;||), (5)

100

where o is the Heaviside function, N4, is the number of
points in phase space, and N is a sufficiently large num-
ber of reference points.

Figure 9 illustrates the results obtained from the exper-
imental attractors introduced above. In Fig. 9(a) the
double-logarithmic plot of the correlation integral versus
radius is shown for the Re=701 state, and in Fig. 9(b) for
the Re=718 state. The radius is given in percent of the
global attractor extension. Both attractors contain
N4, =32768 data points in the resolution of a 12-bit
ADC. We chose N =3000 reference points for an esti-
mate of the correlation integral. In the plots C(R) is
drawn for embedding dimensions d;y =1-12. The dashed
lines illustrate the fit of the slopes yielding the correlation
dimension  D,. For Re=701 one obtains
D,~2.451%0.15; for Re=718, D,~4.2+0.2. Obviously
one cannot perform the required limit R --»0 for the di-
mension calculation, because due to noise one finds a
“knee” in the double-logarithmic C(R ) plots at approxi-
mately R =2%. Below that value the trajectories tend to
fill the embedding space in any dimension, leading to a
correlation dimension D, =d. Above this knee the frac-
tal geometry of the strange attractor can be detected.
Figure 9(c) shows the convergency of the slopes versus
embedding dimension. From dg > 6 the value of D, con-
verges for the Re=701 state. This is the result which we
predicted with the integral local deformation in Fig. 7(b).

The sequence of Figs. 10(a)-10(f) shows the dynamic
behavior of points on the experimental strange attractor
(Re=714, '=0.374, k=0.2 mm). Starting with an ini-
tial spherical cloud of points it can be recognized that
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due to the chaotic dynamics these points separate from
each other. After an evolution time ¢., ~0.44T, the ini-
tial sphere becomes an ellipsoid. This is the characteris-
tic “‘stretching” process known as the butterfly effect, i.e.,
the system shows sensitivity to small variations of initial
conditions. Due to dissipation, volume elements in the
embedding space shrink. It can be seen in Fig. 10(b) that
although we find expansion in one direction other direc-
tions may shrink. Additionally, because of a finite
boundary of the attractive basin, the ellipsoid must be
folded. This folding process can be observed in Figs.
10(c) and 10(d). For evolution times t., >2T,, points

1021 Z &
= ="
o - Al CR
A o~ _M = 2.45
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FIG. 9. Double-logarithmic plotted correlation integrals

C(R) vs scaling radius R from dg=1-12. (a) Re=701, (b)
Re=718, (c) convergence of D,.

from the initial sphere are distributed over the entire at-
tractor [Figs. 10(e) and 10(f)]. This stretching, shrinking,
and folding process leads to a very complicated self-
similar structure of the strange attractor which we mea-
sured with the correlation dimension. To measure the
dynamic behavior, i.e., the averaged time constants for
the stretching and shrinking processes, one estimates the
Lyapunov exponents A,. We usually approximate the
linearized flow map T; by a least-squares fit [26,27] and
obtain the spectrum of Lyapunov exponents from

. 1
A= lim —log,||T} e;‘|| , (6)
tev_'oo tev ev
where e}‘ (k=1,...,dg) is an orthonormal base and ¢,

is the evolution time. Implementation details of this
linear fit are described in [28]. Figure 11(a) shows the
spectrum of Lyapunov exponents versus embedding di-
mension for the Re=701 state, and Fig. 11(b) for the
Re=718 state. The dotted lines indicate the estimated
exponents averaged from the values marked with solid
squares for higher embedding dimensions. While for Fig.

Vz(h‘[)

V1)

Vz(h'[l

%0
VZH) Vg ()

FIG. 10. “Stretching and folding”: Evaluation of an initial
sphere on an experimental strange attractor.
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2 " " " " T fractal dimension which we obtained with the correlation
\ K @) - dimension D,.
Tl \ | An essential measure of the chaoticity of a system’s
— . state is the entropy, which can be estimated from the
ﬁ 7\1 \- Lyapunov exponents as the metric entropy
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- I / Ty By k
< A / . —
a3 . " /‘/ for homogeneous attractors [31]. AT denotes the positive
L - . exponents. The correlation entropy or order-2 Kolmo-
- ‘ ) / ‘ gorov entropy [32] is given by
0 2 b 6 8 10 12 K,=— dlim lim (l/r)logz(PdE(T)) ,
— 0 T—>
dg £
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2 = P, ()= CdE+1(7')
\ (b) ; dgi T/ = Cq,(7)
A . ~.
1 1 - . . . . . .
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a )\2 : R embedding space. Figure 12(a) shows plots of the loga-
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be negative for dissipative systems. If we try to use the ) .
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tion about the negative Lyapunov exponents [29]. A very T,
rough estimation yields (As,A4)=(—0.99,—1.85)
bitS/OI‘bit. (b)
From the spectrum of Lyapunov exponents one calcu- 0.8
lates the Kaplan-Yorke dimension Dgy using the conjec- = H
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We find Dgy~2.53 for Re=701 and Dgy=5.55 for
Re=718. Due to the uncertainty of the negative ex-
ponents, Dyy =~5.55 does not agree with the value of the

from the accumulation line of the logarithmic plotted successive
correlation integrals for higher embedding dimensions. (b) Con-
vergence of K, for increasing embedding dimension [I"=0.374,
k==0.20 mm (0.23°), Re=701].
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Re=701 the obtained value is K, =0.3 bits/orbit, which
fits to the value of the metric entropy [dashed line in Fig.
12(b)].

V. RESULTS OBTAINED FROM THE EXPERIMENTAL
PERIOD-DOUBLING SCENARIOS
IN TAYLOR-COUETTE FLOW

The calculated results for the fractal dimensions,
Lyapunov exponents, and entropies are of little
significance when they are not discussed as a function of
the Reynolds number or the boundary conditions of the
experiment. We will show that the evolution of these dy-
namic variables gives a useful quantitative characteriza-
tion of the considered routes to chaos.

Figures 13(a)—13(d) illustrate the evolution of the dy-
namic variables for '=0.374 and k =0.20 mm (0.23°) in
the Reynolds-number interval Re=640-740. Figure
13(a) shows the evolution of the correlation dimension D,
versus Reynolds number. From Re=633 to 663 one finds
a period-1 mode. At Re=~663 a period-doubling bifurca-
tion appears, leading to a period-2 mode, and at Re=691
the transition to chaos occurs. From Re=633 to
Re,.=~691 the estimated correlation dimension is D,~1
as expected. For increasing values of Reynolds number
the value of D, increases. We found a transition to chaos
following D, <(Re—Re,)!”%, which is very similar to a
continuous phase transition. At Re~=730 the chaotic dy-
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namics of the symmetric s flow becomes globally unsta-
ble and the asymmetric oscillatory one-vortex flow a; is
established. The values for the dimension grow up to
D, =4.3 in the end of the chaotic regime, which is a clear
indication that this bifurcation sequence cannot be simu-
lated by a simple low-dimensional map such as the logis-
tic map, when we interpret D, as a lower estimate of the
system’s degrees of freedom. The error bars in this plot
correspond to the standard deviation of the averaging
process over higher embedding dimensions and to the
standard deviation of the linear regression when D, is
determined from the slope of the double-logarithmic
correlation integral.

Figure 13(b) shows the evolution of the Lyapunov spec-
trum versus Reynolds number in the same interval. Posi-
tive Lyapunov exponents indicate chaotic motion. The
onset of chaos is found at Re,~691. For higher Rey-
nolds numbers we estimate up to six exponents, keeping
in mind that the accuracy for negative exponents is not
very high due to a tangential space which is not well
spanned in the stable directions, leading to poor statistics.
The uncertainty is at least AA==0.5 bits/orbit.

So the absolute values of the exponents are not very
useful but again the evolution, the relative behavior of A;
when the Reynolds number is varied, is very interesting.
The positive values show the same trend as D,, i.e., a
strong increase in the beginning of the chaotic regime
and a slower increase in the end of the stable s branch.
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FIG. 13. (a) Evolution of the correlation dimension as a function of Reynolds number, (b) spectra of Lyapunov exponents vs Rey-
nolds number, (c) Kaplan-Yorke dimension vs Reynolds number, and (d) entropies vs Reynolds number for I'=0.374 and k =0.20
mm (0.23°).
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The evolution of the Kaplan-Yorke or Lyapunov di-
mension is illustrated in Fig. 13(c). Dgy shows a smooth
nonlinear increase as a function of the Reynolds number.
To help visualize this we plot Dy < (Re—Re,)!”*. One
has to take into account that due to the connection to the
Lyapunov spectra the errors of these values are larger
than the errors for D,.

From the spectrum of Lyapunov exponents one can
calculate the metric entropy A4, indicated with crosses in
Fig. 13(d). The diamonds show the values of the order-2
Kolmogorov entropy K,. We calculated K, only in the
low-dimensional regime Re~=~630-715. For the higher-
dimensional data the statistics become insufficient. Here
the transition to chaos is described by an entropy increas-
ing linearly.

An open question is whether the behavior of the dy-
namic variables of a period doubling into chaos, as de-
scribed above, can be a paradigm for all period-doubling
scenarios. We cannot give an answer in this paper, but
we will give a hint that this is not improbable. A second
scenario is investigated for I'=0.374 and k=0.33 mm
(0.38°). Figure 14 shows the bifurcation diagram corre-
sponding to Fig. 4(h). In Fig. 14(a) one period doubling
(from P, to P,) is observable. An extension of the regime
at the accumulation point (Re,~633) of the period-
doubling cascade reveals a period-4 (P,) [Fig. 14(b)].
Figures 14(c) and 14(d) show two extensions of the first
visible periodic window W, illustrating a noisy period
doubling. In the extension of the second periodic window
W, [Fig. 14(e)] a similar scenario can be seen.

100
| (@)

630 650 670

S0

vz(a.u.)

626 630 636

@

FIG. 14. (a) Bifurcation dia-
gram for I'=0.374 and k=0.33
mm (0.38°), (b) expansion of the
accumulation point, (c) and (d)
expansion of the first periodic
window W, (e) expansion of the
second periodic window W,.
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FIG. 15. (a) Evaluation of the correlation dimension as a
function of Reynolds number, (b) spectra of Lyapunov ex-
ponents vs Reynolds number, (c) Kaplan-Yorke dimension vs
Reynolds number, and (d) entropies vs Reynolds number for
'=0.374 and kK =0.33 mm (0.38°).

We are interested again in the evolution of the dynamic
variable of this sequence to chaos. Figure 15(a) shows the
correlation dimension D, versus Reynolds number. One
finds a behavior of D, similar to the bifurcation discussed
above. The curve D, < (Re—Re,)!’* is drawn in this dia-
gram. In the periodic windows D, is found to be 1. The
spectra of Lyapunov exponents are given in Fig. 15(b).
The trend of the first Lyapunov exponent (A,, indicated
with diamonds) corresponds to the evolution of D,. The
second exponent is approximately zero for nearly the
whole scenario [we think that deviations from zero are
due to noise, in contrast to the second exponent in Fig.
13(b)]. For the periodic windows we cannot estimate neg-
ative Lyapunov exponents using the approximation of the
tangential map because the tangential space is not
spanned in all relevant directions. The Kaplan-Yorke di-
mension drawn in Fig. 15(c) as well as the metric and
correlation entropy in Fig. 15(d) also reflect the trend
suggested by the correlation dimension.

Recent optimistic estimates show that a value of
D,~=4.3 for a data set containing Ny, =32 768 points is
reliable [33]. Proof (not in a mathematical sense but
more from an experimentalist’s point of view) that the ob-
tained value for D, actually represents the underlying dy-
namics can be given by showing the evolution of the
correlation dimension for a variation of the control pa-
rameter. From this procedure one finds an answer to the
question of spurious correlation dimensions due to a con-
vergency of the slopes of the double-logarithmic plotted
correlation integrals for a small number of data points or
colored noise. Otherwise, much effort is necessary to
detect these effects [34,35].

The same situation exists with regard to the spectra of
Lyapunov exponents. Strong efforts have been made to
identify true and spurious Lyapunov exponents when the
embedding dimension is larger than the number of
relevant degrees of freedom. An estimate of the
sufficiently large embedding dimension with the fill factor
or the integral local deformation gives the correct embed-
ding dimension only for the Euclidean embedding, not
for the original phase space, and is of no help concerning
this problem. Calculating the evolution of the Lyapunov
spectra in addition to the evolution of the spectra of the
time-reversed attractor for a variation of the control pa-
rameters simplifies the identification of exponents of
physical relevance. A comparison of the corresponding
Kaplan-Yorke dimension with the correlation dimension
verifies the results.

VI. CONCLUSION

We estimated the dynamic variables such as fractal di-
mensions, Lyapunov exponents, and entropies not only
for a few attractors measured from sequences into chaos,
but also showed the evaluation of these variables when
the control parameters of the experiment are varied. The
efforts of measuring and interpreting many (> 50) time
series are justified by the results of this procedure.

We found a remarkable functional dependence of the
fractal dimension on the Reynolds number for the inves-
tigated period-doubling routes. The curve
D, = (Re—Re,)""* shows that the transition from period-
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ic to chaotic dynamics is similar to continuous phase
transitions, and D, is a sufficient order parameter in this
case. The other dynamic variables show the same trend
as the correlation dimension, but are more sensitive to
measurement noise which is not negligible for real physi-
cal systems. The work on noise-reduction methods is in
progress and will be published elsewhere [36].
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